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1 Preface 

 

Modeling data based on finite mixture distributions is a fast developing area with a lot of 

different applications. These models provide a straightforward method to derive a detailed 

representation and description for given data. Anyhow, inference is challenging.  

 

This package is an extension of the MATLAB toolbox bayesf Version 2.0 developed by 

S. Frühwirth-Schnatter. It was developed during a PhD and Master project at KAI- 

Kompetenzzentrum für Automobil-und Industrie Elektronik GmbH. 

 

Major changes, constraints and extensions of bayesMoE Version 1.0 compared to the 

package bayesf Version 2.0, are the following: 

 Supported by MATLAB 2011 and newer versions; might work on previous versions 

too 

 Data must be a mixture of univariate normal distributions 

 Priors for the regression coefficients are hierarchical or non-hierarchical normal 

distributions 

 Priors for the variances are (hierarchical) inverse Gamma distributions  

 Data can be censored 

 Regression model can be  

o a finite (mixture) regression model or  

o a Mixtures-of-Experts model 

 Cross validation (leave one out) can be performed 

 Demos are available for: 

o Identifying the number of components (demo_FindNumberOfComponents.m – 
censored data, demo_FindNumberOfComponts_uncensored.m – uncensored 

data) 

o Fitting and predicting finite mixtures of regression models (demo_mixreg.m – 

censored data, demo_mixreg_uncensored.m - uncensored data) 

o Fitting and predicting Mixtures-of-Experts models (demo_MoE.m – censored 

data, demo_MoE_uncensored.m – censored data) 

 

Attention:  

o All modified functions from the original toolbox have been renamed to ‘*_MOE‘. 

o The code of each function gives you first information about the author and modifier.   

o Demos that contain censored data take a lot of computational time! 

 

 

http://dict.leo.org/ende?lp=ende&p=ziiQA&search=constraint&trestr=0x8001
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Detailed information about the theoretical background, methods, function outputs and 

used data can be found here: 

 S. Frühwirth-Schnatter: Finite Mixture and Markov Switching Models. Springer 

Series in Statistics (2006) 

 

 Documentation bayesf Version 2.0:  

http://www.jku.at/ifas/content/e108280/e108502/e108556/e108675/book_matlab_v

ersion_2.0.pdf 

 

 R. Kohavi: A Study of Cross-Validation and Bootstrap for Accuracy Estimation and 

Model Selection. in 'IJCAI' , pp. 1137-1145  (1995)  

 

 O.Bluder: Statistical Modeling based on Physical Parameters of Smart Power 

Switches under Cycle Stress. Dissertation, Alpen-Adria Universität Klagenfurt 

(2011) 

 

 K.Plankensteiner: Application of Bayesian Models to Predict Smart Power Switch 

Lifetime, Diplomarbeit, Alpen-Adria Universität Klagenfurt (2011) 

 

Please be aware that the program and functions are mainly tested for the data it was 

developed for. This package may still contain some coding errors and may not work for all 

sorts of data. 

 

In case of errors or problems when using this package, please inform K. Plankensteiner 

or O. Bluder by writing an e-mail to  

 

kathrin.plankensteiner@k-ai.at 

olivia.bluder@k-ai.at 

 

Finally we kindly ask to acknowledge the use of the packages bayesf 2.0 and bayesMoE 

if you use results obtained by this package in any publication.  

http://www.jku.at/ifas/content/e108280/e108502/e108556/e108675/book_matlab_version_2.0.pdf
http://www.jku.at/ifas/content/e108280/e108502/e108556/e108675/book_matlab_version_2.0.pdf
mailto:kathrin.plankensteiner@k-ai.at
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2 Fitting Finite Mixtures of Regression Models 

 

To fit a finite mixture of regression models to data, five steps are necessary: 

 

1. Preparing the data 

2. Defining the model 

3. Choosing the prior 

4. Initializing the MCMC 

5. Running the MCMC  

 

2.1 Preparing the Data 

 

data is a structure array with four obligatory fields: 

o data.y: 1xN vector with observed data points 

o data.N: size of data 

o data.X: (d+1)xN matrix with a leading 1 and covariates  

o data.censor: 1xN vector ( ) containing 0 and 1, such that: 

 

 

 

 

ATTENTION: if only the intercept is required (=> fitting a finite mixture of distributions to 

the data) use a vector of ones instead of the matrix of covariates: 
data.X = ones(1, data.N) 

Mixtures-of-Experts (MoE) model 

 

If the regression model is a Mixtures-of-Experts (MoE) model, additional fields are required:  

o data.Xweights: contains either the empirical estimated mixture weights in a KxN 

matrix OR the values of covariates for the regression of mixture weights. 

o data.weightfun: name of the function to model the mixture weights. This implies 

that the function to model the weights needs to be saved in an .m file with the name 

‘weightfun’. 
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2.2 Defining the Model 

 

A finite mixture model is a structure array, called model, with three obligatory fields to 

define: 

o model.K: number of components 

o model.dist: underlying density of the data within one mixture component  

o model.d: number of regression coefficients for one component  

 

 

ATTENTION: the MoE_Toolbox can only handle: 

o model.dist= ’Normal’ 

 

2.3 Choosing the Prior 

 

Based on data and model, the following prior distributions can be applied: 

 

 Normal distributions for the regression coefficients and hierarchical inverse 

Gamma distributions for the variances 
prior=priordefine_MOE(data, model); 

 

 Normal distributions for the regression coefficients and inverse Gamma 

distributions for the variances 
 prior.hier = false; 

prior=priordefine_MOE(data, model, prior); 

  

  

The information is stored in the structure array prior. If prior information is available, it 

can be included by writing directly into the corresponding arrays of prior. 

 

Mixtures-of-Experts (MoE) model 

 

If the regression model is a Mixtures-of-Experts (MoE) model, additional fields have to be 

defined:   

o model.MOE=true; 

o model.weightfun=data.weightfun; 

o model.indicmod.dist = 'FixedWeights'; (meaning that the weights have fixed 

values, instead of distributions. Hence, they can be modeled by a function.)  
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2.4 Initializing the MCMC 

 

Call now the function mcmcstart_MOE() to initialize the MCMC. This can be done by 

typing: 

 
[data, model, mcmc]= mcmcstart_MOE(data, model) 

 

This function defines the vector of initial allocations (data.S) as well as default values for 

the burn-in period (mcmc.burnin), the number of samples to draw (mcmc.M) and the 

number of allocations to store (mcmc.storeS). If the numbers of allocations to store is 

smaller than the number of samples, the last mcmc.storeS are stored. The default values 

are: 

 
mcmc.M= 5000;   

mcmc.burnin=1000; 

mcmc.storeS=500; 

mcmc.storepost=true; 

mcmc.startpar=false; 

mcmc.ranperm=true; 

 

 

ATTENTION: Check if the vector of initial allocations data.S is sorted corresponding to 

the given prior information. This means that e.g. the first entries of the arrays in prior 

should be the corresponding prior information for data data.y with allocation 1 (data.Si 

= 1). If this is not given, the allocations need to be permuted; else wrong prior 

information will applied.  
 

2.5 Running the MCMC 

 

Based on the data, the defined model, prior and MCMC properties (stored in data, 

model, prior, mcmc)Bayesian inference using MCMC is carried out when calling the 

function mcmc_MOE(): 
 

mcmcout= mcmc_MOE(data, model, prior, mcmc);  

 

2.6 Bayesian Inference Based on the MCMC Draws 

 

Different ways to explore the Bayesian inference are provided: 

o MCMC draws can be plotted with : 
mcmcplot_MOE(mcmcout) 
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o The value of the marginal likelihood can be determined with: 
[marlik,mcmcout]=mcmcbf_MOE(data,mcmcout);  

 

o Posterior allocation probabilities and classification can be plotted with: 
[clust]=mcmcclust(data, mcmcout); 
mcmcclustplot(data, clust); 

 

o Parameter estimation can be done with 
[est,mcmcout]=mcmcestimate_MOE(mcmcout); 

   

o The fit can be plotted with (e.g. using the posterior mode estimates): 
data.model=est.pm; %takes the posterior mode estimate 
dataplot(data); 

 

o Model discrimination can be evaluated by plotting PIT values:  
PIT= PIT_mixtures(datared, mcmcout);  

 

o Goodness of fit criteria like AIC, BIC etc. can be determined with 
[ic,mcmcout]=mcmcic_MOE(data,mcmcout);  

 

3 Predicting New Data 
 

Based on the MCMC draws new data can be predicted. For this purpose the structure 

array data_future must include the following fields: 

o data_future.X: (d+1) x M covariate matrix with leading 1, where M is the number 

of data to predict.  

 

Call the function mcmcpreddens_MOE and data will be predicted based on the MCMC draws: 
[fig,pred]=mcmcpreddens_MOE(data_future, mcmcout) 

 

 

ATTENTION: if data_future.y is also available, the predicted data is compared with the 

real observation.  

 

Mixtures-of-Experts (MoE) model 

 

If the regression model is a Mixtures-of-Experts (MoE) model, additional fields are 

obligatory:  

o data_future.Xweights: contains either the empirical estimated mixing weights in 

a K x M matrix OR the values of covariates for the regression of mixing weights. 

o data_future.weightfun: name of the function to model the mixture weights 
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4 Cross Validation Evaluation 
 

A defined model can be evaluated by using leave-one-out doing cross  

To use this function, prepare the data (stored in structure array data - see section 1), 

define the model (stored in structure array model - see section 2) and choose the prior 

(stored in the structure array prior - see section 3).  

 

If single results of the cross validation evaluation should be stored, define additionally: 
model.StoreResult=true; 

 

 

Call the function CrossValidation_MOE() to perform cross validation evaluation: 
CrossVal=CrossValidation_MOE(data, 'mcmc_MOE', model, prior); 

 

Due to visual reasons, only if the data contains less than 21 subsets with equal 

covariates, the results of cross validation are plotted automatically. 

 

ATTENTION:  

 Make sure that the columns of data.y and data.X are ordered, such that data 

points with same covariates are next to each other.  

 Cross validation makes only sense if dataset consists of subsets in matrix X. (e.g. 

compare data.X in datareg_MOE.m) 

Mixtures-of-Experts (MoE) model 

 

In case of a Mixtures-of-Experts (MoE) model, two cases are possible:  

1) model development and prediction make use of the same data.Xweights and 
data.weightfun 

2)  model development and prediction make use of different Xweights and weightfun  

   (e.g. model development with empirical estimated weights, prediction based on an    

     approximation function/model for the mixing weights). In this case: 
o model.MOE_pred=true; 

Now define:  

o model.MOE_Xweights; Xweights to evaluate the weights based on 

model.MOE_weightfun 

o model.MOE_weightfun: name of the function to model the mixing weights, based on 
model.MOE_Xweights. 
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